Improving the numerical stability of structure from motion by algebraic elimination

نویسندگان

  • Mireille Boutin
  • Ji Zhang
  • Daniel G. Aliaga
چکیده

Structure from motion (SFM) is the problem of reconstructing the geometry of a scene from a stream of images on which features have been tracked. In this paper, we consider a projective camera model and assume that the internal parameters of the camera are known. Our goal is to reconstruct the geometry of the scene up to a rigid motion (i.e. Euclidean reconstruction.) It has been shown that estimating the pose of the camera from the images is an ill-conditioned problem, as variations in the camera orientation and camera position cannot be distinguished. Unfortunately, the camera pose parameters are an intrinsic part of current formulations of SFM. This leads to numerical instability in the reconstruction of the scene. Using algebraic methods, we obtain a basis for a new formulation of SFM which does not involve pose estimation and thus eliminates this cause of instability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical solution of higher index DAEs using their IAE's structure: Trajectory-prescribed path control problem and simple pendulum

In this paper, we solve higher index differential algebraic equations (DAEs) by transforming them into integral algebraic equations (IAEs). We apply collocation methods on continuous piece-wise polynomials space to solve the obtained higher index IAEs. The efficiency of the given method is improved by using a recursive formula for computing the integral part. Finally, we apply the obtained algo...

متن کامل

Numerical solution of differential-algebraic equations in mechanical systems simulation

The numerical solution of the differential-algebraic equations of motion of mechanical systems offers many computational challenges. In this paper we describe progress which has been made in understanding the formulation of the equations of motion from the viewpoint of numerical stability, and outline some of the difficulties which must be resolved for efficient and reliable numerical methods i...

متن کامل

Stability analysis of concrete gravity basestructures in rocking motion under wave effect

Given the worldwide industry progress in the construction of massive concrete structures, it would be a good idea to use concrete gravity base structures (GBS).In this regard, better understanding of thesestructuresregardingtheiradvantages and disadvantages in offshore areas seems necessary.The present study employed MacCammy-Fuchs method, which is based on the size of the structure to the wave...

متن کامل

Stability and numerical solution of time variant linear systems with delay in both the state and control

In this paper, stability for uncertain time variant linear systems with time delay is studied. A new sufficient condition for delay-dependent systems is given in matrix inequality form which depends on the range of delay. Then, we introduce a new direct computational method to solve delay systems. This method consists of reducing the delay problem to a set of algebraic equations by first expand...

متن کامل

Elastic stability of columns with variable flexural rigidity under arbitrary axial load using the finite difference method

Abstract:   In this paper, the finite difference method (FDM) is applied to investigate the stability analysis and buckling load of columns with variable flexural rigidity, different boundary conditions and subjected to variable axial loads. Between various mathematical techniques adopted to solve the equilibrium equation, the finite difference method, especially in its explicit formulat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006